

November 2, 2009

The Past and Future Internet

Richard Bennett Research Fellow, ITIF Washington, DC

A Brief History of the Internet

- Designed in 1972-1977
 - Semiconductor parts were slow and expensive.
 - The system was private.
- Radical change in the early 1990s
 - Advent of World-Wide Web brought new content on-line.
 - Opening of the system to the mass public brought new users on-line as well.
- An even bigger transformation is upon us.

Present-Day Challenges

- We're running out of addresses for IP version 4.
- Number of routes is increasing at an alarming rate.
 - Now up to 300,000 BGP prefixes.
 - Semiconductor parts that make fast routing possible do not follow the Moore's Law curve for mass-market parts.

Present-Day Challenges - 2

- Traffic growing at 50-100% per year.
 - Considerable uncertainty about the rate.
 - Private peering and paid peering emerging.
 - Content Delivery Networks are growing.
- Three billion mobile devices will join the Internet.
- Eight billion CPUs are sold every year
 - Many of them will come on-line as well.
- Security, spam, DDoS attacks, and viruses are challenges.
 - End-to-End Solutions are ineffective.

■ The Congestion Problem

- Managing bandwidth is a central design problem for any multiuser communication network.
- PSTN allocates bandwidth call-by-call:
 - Unused bandwidth goes to waste.
 - Congestion is a pathology: "All circuits in use."
- Packet nets manage bandwidth packet-by-packet:
 - "Congestion" is simply high utilization.
 - High utilization is the goal.
 - Contention is ongoing.
 - Over-provisioning is not a solution.
 - Economics allocate bandwidth most efficiently.

The Routing Problem

- Meyer, Zhang, and Fall, "Report from the IAB Workshop on Routing and Addressing," RFC 4984, 2006:
 - "[We] need to devise a scalable routing and addressing system, one that is scalable in the face of multihoming, and that facilitates a wide spectrum of traffic engineering (TE) requirements."
- This system has not been developed
 - Probably can't be developed around IPv4 or IPv6.
- Where will the New Architecture come from?
 - NSF funding NEWARCH, GENI, and FIND
 - Some other country
- Many testbeds, no new architecture
 - We're not there yet

Most Important Trends

- Wireless
- Video
- Machine-to-Machine
- Low-Latency Services like Gaming

Wireless Internet Access

- 1.6 billion users on Internet today vs. 4.5 billion mobile devices
- World-wide Spectrum Crunch
 - Especially tight in the U. S. because of government inaction.
- Diverse Service Model
 - Telephony is a high-value application.
 - Wireless devices need at least three service levels.
- Pervasive Connectivity
 - Greater cooperation between carriers
- Enables entirely new vistas for application development.
 - Location-aware services
 - Finding people and things
 - Need for much better security.

Promising Technologies

- Beam-Forming
 - Allows same frequencies to be re-used
 - Troublesome for aggregation.
 - Still a paper tiger, but work is underway for SDMA.
- Multiple-Use on Digital Networks.
 - A crude form is found in the White Spaces order.
 - A lot more work to be done.
 - Time scale isn't days, it's milliseconds.
- Bandwidth brokering and bartering.

Emerging Applications

- Advanced User Interfaces
 - Driven by Speech, Location, and Gesture
 - Keyboard-free
- Multiple simultaneous communication modes
 - GPS + Bluetooth + NFC + WiFi/3G/4G
- Enhancing the Power of Social Networks
 - Automatically Capture and Share Location
 - Capture and Share transactions
- Integration of preferences, calendars and social graph
 - Frequent communications, not a great deal more data.
 - Aggregation by base station in the home, office, or car.
- The Goal of Much of this is "Serendipity:"
 - Things you're glad to know but didn't know to seek.

Thank you.

See my paper, "Designed for Change: End-to-End Arguments, Internet Innovation, and the Net Neutrality Debate," at itif.org.

rbennett@itif.org www.itif.org