

Open Data Cloud for Biomedical Informatics: A Public/Private Partnership to Fast Track Evidencebased Medicine

Dr. Chalapathy Neti

Executive Architect, Information Agenda for Healthcare
Co-Strategist, Worldwide Healthcare Research
Dr. Shahram Ebodallahi, Research Staff Member
IBM Research

The World is also becoming Smarter

FLATTER

SMALLER

The Information Explosion...

15 Petabytes
of new information
generated every day

New Intelligence...
Smarter Enterprises are
Using Information to Make
More Intelligent Choices

Volume

Variety

Velocity

An opportunity for health systems to think and act in new ways.

Optimize best healthcare practices. Deliver excellent, individualized health and care experiences.

Create new healthcare service models and markets.

IOM EBM Roundtable goal...

By the year 2020, *ninety percent of clinical decisions* will be supported by accurate, timely, and up-to-date clinical information, and will reflect the best available evidence

IOM Roundtable Charter

Vision: data→information→evidence→decision

Data

i2b2

Current Status:

- Data Collection: Many ongoing initiatives for data collection and sharing
- ADNI, i2b2, caBIG, PhysioNet, ...
- funds allocated to medical data collection: several \$100M
- Data usage and utility
- Largely by Individual labs and researchers
- Results of research activities and independent developments reported via the regular scientific publication channels

Issues:

- Lack of comprehensive multi-modal longitudinal data sets for many diseases
- Ease of access to the larger scientific community for evidence and insight generation

- Background:
 - Low power of clinical measures
 - Need for direct evidence of "disease progression" and measures of "disease modification"
- Overall goals: to provide methods and data which facilitate AD trials
- Long term goal is to develop "validated surrogate markers" for early detection and to monitor progression of AD
- Immediate goals are
 - To develop improved standardized biomarkers for trials
 - To validate these biomarkers
 - By correlating with clinical progression/autopsy
- Funding \$67 mil: \$40 mil NIH, \$27 M private

Data

- 200 NORMAL 3 yrs
- 400 MCI 3 yrs
- 200 AD 2 yrs
- Visits every 6 months
- 57 sites
- Clinical, blood, LP
- Cognitive Tests
- 1.5T MRI

Some also have

- 3.0T MRI (25%)
- FDG-PET (50%)
- PiB-PET (approx 100)

Analytics for Information Extraction

<u>geWorkbench</u> <u>LONI Pipeline</u> <u>ITK/VTK</u>

MedLEE

Purpose:

 Tools for quantification, localization, and characterization of concepts of interest in multi-modal patient data (eg. Hippocampal volume from brain imaging data, dosage of drug from clinical notes, ...)

Current Status:

- Many analytic tools are available today
- Text analytics: MedLEE, MedTAS, ...
- Image analytics: ITK/VTK, XIP, Slicer, LONIPipeline,...
- Gene analytics: geWorkbench, ...

Issues:

- Lack of comprehensive benchmarking and validation of the analytics for clinical applications
- Which analytic tool to trust?
- Slow pace of analytics tool development

Information Organization

Purpose:

- Creating an information model anchored in the underlying multi-modal patient data
- Summarizing the characteristics of the different concepts of interest as obtained from various multimodal data sources

Current Status:

- Many taxonomies to capture key concepts
 encountered by the clinicians (RadLex, GO, UMLS, ...)
- Many ongoing efforts in linking various taxonomies

Issues:

 Lack of flexible and extensible information models of the longitudinal multi-modal patient data for different purposes and use case scenarios

Evidence mining

Purpose:

- Cross-cohort and cross-time information analysis
- Mine insight and evidence from the large pool of information extracted from patients' multi-modal data

Current Status:

 Statistical tools are available today to analyze and mine for insight over large pool of information but with limited use of cross-modal and multi-modal mining

Issues:

- Lack of an open and extensible analytics infrastructure for open collaboration
- Lack of consumable and composable analytics for the general medical researcher for ease of hypothesis generation and validation

Example: Mild Cognitive Impairment \rightarrow Alzheimer's

Function

- History: Parent forgetful for few years before death
- Cognitive Profile:
 - –Increased forgetfulness:
 - -Test of mental status:
 Delayed recall
- Imaging Profile:
 - —MRI: Mild hippocampal atrophy
 - **FDG PET**: Reduced metabolism medial temporal lobe

A Heterogeneous Condition

FDG-PET

Improving clinical and operational decisions

Evidence-based Decision

- Purpose:
 - Use insight and evidence derived from multi-modal longitudinal data to improve decisions
 - Time to decision
 - Quality of decision
- Current Status:
 - Using evidence published in journal articles
- Issues:
 - Lack of physician dashboard populated with validated and easy to use tools
 - Inability for quick decision validation based on evidence obtained from large cohort of "similar" patients

Example: "Patient like this"

Proposal: An Open Collaborative Model for Fast Tracking Information-Based Medicine

Proposed Architecture

Value to Different Constituents

Health-care Institutions

- ROI not justifiable for single-handed data collection
- Minimal investment results in benefit from the efforts of the larger scientific community
- No clinical institution is capable of hiring and maintaining a large scientific resource required for making substantial progress

Scientific Community

- Grand challenge problems have substantial societal and business benefits
- Reduces barrier for entry in grand problem solving arena
- Common data sets supported and approved by funding agencies could facilitate funding for participants

Commercial Entities

- Provides a platform for developing scalable content management, information integration, and decision intelligence technologies
- Cloud computing applied to health-care
- Referenceable context for showcasing value of IT platforms

Regulators and Funding Agencies

- Assess and monitor progress by community
- Prioritize tasks and scientific research to match current directions and issues of importance
- Regulate and approve analytics and tools for clinical use

