A Rapid-Learning Health System

Using HIT for Medical Research

Lynn Etheredge
March 17, 2009
Rapid Breakthrough Science Using IT

• A new international model for science
 – Large computerized research databases
 – Data-sharing via WWW
 – Networks of researchers, collaborative science

• Key developments
 – WWW created at CERN (1992): high energy physics, astronomy, global warming, earthquakes, etc.

• Cyberinfrastructure = future basis of science, technology, economic growth (NSF)
Applying IT to Medical Research

• HIT research leadership
 – Electronic health record (EHR) databases: Kaiser-Permanente (8 m); VA (8m); Geisinger (3m)
 – Research networks: HMO Research Network (15 HMOs, 11 m enrollees), Cancer Research Network (12 HMOs, 10 m enrollees), Vaccine Safety Datalink
 – Major institutions (e.g. Mayo) & companies (e.g. IBM)

• Policy interest in HIT
 – HHS national HIT office, HIT/EHR strategy, data and standards development
 – *Health Affairs* (rapid-learning health system), IOM (learning healthcare system) (2007)

• Payoffs of *in silico* research
 – Vioxx side effects (Kaiser)
 – Genome-disease associations (2007)
Recent Developments

• New networks & grids
 – FDA Sentinel network (100 M patients)
 – Cardiovascular research network
 – NCI’s CaBIG & BIG Health Consortium - a WWW for medical research

• New databases & capabilities
 – Kaiser-RWJF: Biobank (200,000→500,000 patients, w/ clinical, genomic & environmental data), world’s largest biobank
 – HHS: Genome-Wide Association Study database (dbGaP, w/ Framingham as core (9,000 patients))

• New predictive models
 – Archimedes-RWJF: ARChES project for very large-scale, physiology-based simulation models for clinical decision-making
Recent Developments

• New policy consensus: HIT for
 – Efficiency
 – Quality problems
 – Effectiveness research
 – Fiscal problems

• New financing (2009) !!
 – $19 billion for HIT - EHRs
 – $10 billion for NIH
 – $1.1 billion for comparative effectiveness research
Rapid Learning Potential

- From today’s *data-poor environment* -- data scarcity & expense of acquiring is a critical limit -- to a future *data-rich environment*, w/potential for near real-time learning from experience of millions of patients

- Research centers, pharma, biomed companies
 - If 100 institutions contribute 100 patient records /year to a computerized databank = 10,000 records
 - Research centers’ net gain: 9900 research records for 100 records = 99:1, for each institution
 - Reduces duplication of research; saves $

- NIH
 - Beyond laboratories with “postage stamp” databases, non-standard & non-interoperable
 - Beyond temporary networks (200+/yr)
 - Petabyte databases & petaflop computing power ! Peta = 10^{15}
Rapid Learning Potential

• Researcher’s productivity/discoveries—our most important resource/outcome
 – Research in days vs years; far more research results—per year & per researcher. “Research at the speed of thought” (or faster!)

• Research creativity, inspiration and breakthroughs
 – Allows inexpensive & extensive data exploration
 – Allows researchers to quickly generate and test new hypotheses, from molecules to populations
 – Allows researchers to use relevant data from many sources
 – Allows researchers to study groups excluded from clinical trials (patients with multiple conditions, children, women), patient subgroups, heterogeneity of response, genetic variations, low incidence and orphan diseases, special needs populations
 – Allows many more individuals, with many more ideas and perspectives, to engage in research
Rapid Learning Potential

• Potential of HIT for effectiveness research
 – “Is treatment A or treatment B better for a patient group C?” is an applied research question
 – With the appropriate data, comparative effectiveness questions can be answered quickly & efficiently
 – In today’s data-poor environment, the appropriate data are usually scarce, expensive and difficult to obtain

• Examples of new databases/patient registries & networks under discussion/development
 – Pediatric research network; patients with multiple chronic conditions (Medicare/Medicaid dual eligibles); new technologies; medical device safety; orthopedics; women (breast cancer); autism; mental health; survivors of pancreatic & lung cancer; sickle cell; alcohol and drug abuse; high risk pregnancies, Medicare cancer registry
Government’s Role

• The new international model for breakthrough science requires government support
 – Cyberinfrastructure, e.g. BIG Health Consortium, NSF high-performance computing, interoperability, data standards
 – Research funding, e.g. $1.1 B for effectiveness research
 – National data policy for collaborative research
 • Publicly funded data must be “open science”, e.g. NSF/CODATA initiative for global, open-access scientific data
 • National research databases and learning networks must be developed and supported
 • National data policies are a key missing element in US (and international) support for breakthrough science. Government policies and incentives are critical for the “science of the commons”
What’s Possible: Example #1

• A rapid-learning system for new medical technologies
 – New technologies are a priority: least known about benefits and risks, driver of future costs & benefits, relatively easy to organize research
 – At point of FDA approval/Medicare’s first payment, HHS (w/ private sector, physicians & patients) would define a national research plan, data to be collected, research registries to be created. Public and private sector collaborate on coverage with evidence development
 – After three years, the accumulated database would be analyzed for comparative effectiveness and safety
What’s Possible: Example #2

• National research databases for government-funded clinical studies
 – HHS does not yet have a national policy requiring public availability (w/ standards, interoperability) of publicly funded data. **US should build on highly-successful Human Genome Model**

 – The evidence base for medical care could include clinically rich, carefully collected (de-identified) data *from millions of patients* in computerized databases. (63,000 trials registered in ClinicalTrials.gov)

 – Clinical medicine needs to develop a robust learning model, a la physics & other sciences, that uses:
 • Experiments (RCTs) +
 • Observational data (research databases) → that lead to
 • Predictive models – for personalized medicine
What’s Possible: Example #3

• A national Medicare cancer registry
 – A uniquely valuable research database on cancer
 • Includes clinically rich data on 750,000 new Medicare patients diagnosed with cancer annually

 – For Research
 • To advance cancer science and care as quickly as possible.
 • To personalize cancer care

 – For Quality
 • To implement a national cancer quality reporting system, starting with breast cancer and colorectal cancer (National Quality Forum)
Summary

• Some parts of the US health system have been leaders in using IT to advance science.

• New HIT investments (EHRs, NCI’s BIG Health Consortium, effectiveness research) make possible extraordinary advances in medical research. National data policy must be addressed.

• A rapid learning health system may provide lessons to advance science, technology, and economic growth.